Ф.А.Брокгауз, И.А.Ефрон
Энциклопедический словарь

 А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Щ
Э
Ю
Я
 
Минимум (математич.). - М. вообще называется наименьшая из рассматриваемых величин. В математическом анализе этим словом обозначают то значение функции, начиная от которого она, как при увеличении, так и при уменьшении переменных, прибывает - другими словами, наименьшее значение функции по сравнению с соседними ее значениями. Нахождение М. производится по тем же правилам, как и нахождение максимумов. Различие заключается в следующем: если при увеличении независимого переменного первая производная данной функции, проходя значение равное нулю, переходит от отрицательных значений к положительным, то имеем дело с минимумом. В противном случае, то есть при переходе первой производной от отрицательных значений к положительным при возрастании независимого переменного, имеем дело с максимумом. Нахождение минимумов играет в математическом анализе весьма важную роль: все вариационное исчисление есть не что иное как теория определения М. определенных интегралов; изобретенная Чебышевым теория функций, наименее уклоняющихся от нуля, тоже занимается вопросами этого рода и т. д. И. Делоне.
 
Главная страница